3.1.79 \(\int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx\) [79]

Optimal. Leaf size=394 \[ -\frac {b^{3/2} \left (5 a^2+b^2\right ) \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{a^{3/2} \left (a^2+b^2\right )^2 d \sqrt {e}}+\frac {\left (a^2-2 a b-b^2\right ) \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {\left (a^2-2 a b-b^2\right ) \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}} \]

[Out]

-b^(3/2)*(5*a^2+b^2)*arctan(b^(1/2)*(e*cot(d*x+c))^(1/2)/a^(1/2)/e^(1/2))/a^(3/2)/(a^2+b^2)^2/d/e^(1/2)+1/2*(a
^2-2*a*b-b^2)*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/(a^2+b^2)^2/d*2^(1/2)/e^(1/2)-1/2*(a^2-2*a*b-b^2)
*arctan(1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/(a^2+b^2)^2/d*2^(1/2)/e^(1/2)+1/4*(a^2+2*a*b-b^2)*ln(e^(1/2)+c
ot(d*x+c)*e^(1/2)-2^(1/2)*(e*cot(d*x+c))^(1/2))/(a^2+b^2)^2/d*2^(1/2)/e^(1/2)-1/4*(a^2+2*a*b-b^2)*ln(e^(1/2)+c
ot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2))/(a^2+b^2)^2/d*2^(1/2)/e^(1/2)-b^2*(e*cot(d*x+c))^(1/2)/a/(a^2+
b^2)/d/e/(a+b*cot(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.48, antiderivative size = 394, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3650, 3734, 3615, 1182, 1176, 631, 210, 1179, 642, 3715, 65, 211} \begin {gather*} \frac {\left (a^2-2 a b-b^2\right ) \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d \sqrt {e} \left (a^2+b^2\right )^2}-\frac {\left (a^2-2 a b-b^2\right ) \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d \sqrt {e} \left (a^2+b^2\right )^2}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a d e \left (a^2+b^2\right ) (a+b \cot (c+d x))}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \sqrt {e} \left (a^2+b^2\right )^2}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \sqrt {e} \left (a^2+b^2\right )^2}-\frac {b^{3/2} \left (5 a^2+b^2\right ) \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{a^{3/2} d \sqrt {e} \left (a^2+b^2\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[e*Cot[c + d*x]]*(a + b*Cot[c + d*x])^2),x]

[Out]

-((b^(3/2)*(5*a^2 + b^2)*ArcTan[(Sqrt[b]*Sqrt[e*Cot[c + d*x]])/(Sqrt[a]*Sqrt[e])])/(a^(3/2)*(a^2 + b^2)^2*d*Sq
rt[e])) + ((a^2 - 2*a*b - b^2)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)^2*d*Sq
rt[e]) - ((a^2 - 2*a*b - b^2)*ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)^2*d*Sqr
t[e]) - (b^2*Sqrt[e*Cot[c + d*x]])/(a*(a^2 + b^2)*d*e*(a + b*Cot[c + d*x])) + ((a^2 + 2*a*b - b^2)*Log[Sqrt[e]
 + Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)^2*d*Sqrt[e]) - ((a^2 + 2*a*b -
 b^2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)^2*d*Sqrt[e])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3650

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3734

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))^2} \, dx &=-\frac {b^2 \sqrt {e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}-\frac {\int \frac {-\frac {1}{2} \left (2 a^2+b^2\right ) e+a b e \cot (c+d x)-\frac {1}{2} b^2 e \cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx}{a \left (a^2+b^2\right ) e}\\ &=-\frac {b^2 \sqrt {e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}+\frac {\left (b^2 \left (5 a^2+b^2\right )\right ) \int \frac {1+\cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx}{2 a \left (a^2+b^2\right )^2}-\frac {\int \frac {-a \left (a^2-b^2\right ) e+2 a^2 b e \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{a \left (a^2+b^2\right )^2 e}\\ &=-\frac {b^2 \sqrt {e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}+\frac {\left (b^2 \left (5 a^2+b^2\right )\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-e x} (a-b x)} \, dx,x,-\cot (c+d x)\right )}{2 a \left (a^2+b^2\right )^2 d}-\frac {2 \text {Subst}\left (\int \frac {a \left (a^2-b^2\right ) e^2-2 a^2 b e x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{a \left (a^2+b^2\right )^2 d e}\\ &=-\frac {b^2 \sqrt {e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right )^2 d}-\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right )^2 d}-\frac {\left (b^2 \left (5 a^2+b^2\right )\right ) \text {Subst}\left (\int \frac {1}{a+\frac {b x^2}{e}} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{a \left (a^2+b^2\right )^2 d e}\\ &=-\frac {b^{3/2} \left (5 a^2+b^2\right ) \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{a^{3/2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^2 d}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^2 d}+\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}+\frac {\left (a^2+2 a b-b^2\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}\\ &=-\frac {b^{3/2} \left (5 a^2+b^2\right ) \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{a^{3/2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}+\frac {\left (a^2-2 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}\\ &=-\frac {b^{3/2} \left (5 a^2+b^2\right ) \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{a^{3/2} \left (a^2+b^2\right )^2 d \sqrt {e}}+\frac {\left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {\left (a^2-2 a b-b^2\right ) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {b^2 \sqrt {e \cot (c+d x)}}{a \left (a^2+b^2\right ) d e (a+b \cot (c+d x))}+\frac {\left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}-\frac {\left (a^2+2 a b-b^2\right ) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d \sqrt {e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 2.93, size = 300, normalized size = 0.76 \begin {gather*} -\frac {\sqrt {\cot (c+d x)} \left (96 \sqrt {a} b^{3/2} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {\cot (c+d x)}}{\sqrt {a}}\right )+\frac {24 b^2 \left (a^2+b^2\right ) \sqrt {\cot (c+d x)} \left (\frac {\sqrt {a} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {\cot (c+d x)}}{\sqrt {a}}\right )}{\sqrt {b} \sqrt {\cot (c+d x)}}+\frac {a}{a+b \cot (c+d x)}\right )}{a^2}-32 a b \cot ^{\frac {3}{2}}(c+d x) \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\cot ^2(c+d x)\right )-6 \sqrt {2} (a-b) (a+b) \left (2 \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-2 \text {ArcTan}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )+\log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )\right )}{24 \left (a^2+b^2\right )^2 d \sqrt {e \cot (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[e*Cot[c + d*x]]*(a + b*Cot[c + d*x])^2),x]

[Out]

-1/24*(Sqrt[Cot[c + d*x]]*(96*Sqrt[a]*b^(3/2)*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt[a]] + (24*b^2*(a^2 + b^
2)*Sqrt[Cot[c + d*x]]*((Sqrt[a]*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt[a]])/(Sqrt[b]*Sqrt[Cot[c + d*x]]) + a
/(a + b*Cot[c + d*x])))/a^2 - 32*a*b*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x]^2] - 6*Sq
rt[2]*(a - b)*(a + b)*(2*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - 2*ArcTan[1 + Sqrt[2]*Sqrt[Cot[c + d*x]]] + L
og[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]])))/((a^
2 + b^2)^2*d*Sqrt[e*Cot[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.65, size = 396, normalized size = 1.01

method result size
derivativedivides \(-\frac {2 e^{3} \left (\frac {b^{2} \left (\frac {\left (a^{2}+b^{2}\right ) \sqrt {e \cot \left (d x +c \right )}}{2 a \left (e \cot \left (d x +c \right ) b +a e \right )}+\frac {\left (5 a^{2}+b^{2}\right ) \arctan \left (\frac {b \sqrt {e \cot \left (d x +c \right )}}{\sqrt {a e b}}\right )}{2 a \sqrt {a e b}}\right )}{e^{3} \left (a^{2}+b^{2}\right )^{2}}+\frac {\frac {\left (a^{2} e -b^{2} e \right ) \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{2}}-\frac {a b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}}{e^{3} \left (a^{2}+b^{2}\right )^{2}}\right )}{d}\) \(396\)
default \(-\frac {2 e^{3} \left (\frac {b^{2} \left (\frac {\left (a^{2}+b^{2}\right ) \sqrt {e \cot \left (d x +c \right )}}{2 a \left (e \cot \left (d x +c \right ) b +a e \right )}+\frac {\left (5 a^{2}+b^{2}\right ) \arctan \left (\frac {b \sqrt {e \cot \left (d x +c \right )}}{\sqrt {a e b}}\right )}{2 a \sqrt {a e b}}\right )}{e^{3} \left (a^{2}+b^{2}\right )^{2}}+\frac {\frac {\left (a^{2} e -b^{2} e \right ) \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{2}}-\frac {a b \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}}{e^{3} \left (a^{2}+b^{2}\right )^{2}}\right )}{d}\) \(396\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-2/d*e^3*(b^2/e^3/(a^2+b^2)^2*(1/2*(a^2+b^2)/a*(e*cot(d*x+c))^(1/2)/(e*cot(d*x+c)*b+a*e)+1/2*(5*a^2+b^2)/a/(a*
e*b)^(1/2)*arctan(b*(e*cot(d*x+c))^(1/2)/(a*e*b)^(1/2)))+1/e^3/(a^2+b^2)^2*(1/8*(a^2*e-b^2*e)*(e^2)^(1/4)/e^2*
2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*c
ot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/
(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))-1/4*a*b/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^
(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/
2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))))

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 285, normalized size = 0.72 \begin {gather*} -\frac {{\left (\frac {4 \, {\left (5 \, a^{2} b^{2} + b^{4}\right )} \arctan \left (\frac {b}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{5} + 2 \, a^{3} b^{2} + a b^{4}\right )} \sqrt {a b}} + \frac {4 \, b^{2}}{{\left (a^{4} + a^{2} b^{2} + \frac {a^{3} b + a b^{3}}{\tan \left (d x + c\right )}\right )} \sqrt {\tan \left (d x + c\right )}} + \frac {2 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{4} + 2 \, a^{2} b^{2} + b^{4}}\right )} e^{\left (-\frac {1}{2}\right )}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/4*(4*(5*a^2*b^2 + b^4)*arctan(b/(sqrt(a*b)*sqrt(tan(d*x + c))))/((a^5 + 2*a^3*b^2 + a*b^4)*sqrt(a*b)) + 4*b
^2/((a^4 + a^2*b^2 + (a^3*b + a*b^3)/tan(d*x + c))*sqrt(tan(d*x + c))) + (2*sqrt(2)*(a^2 - 2*a*b - b^2)*arctan
(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(a^2 - 2*a*b - b^2)*arctan(-1/2*sqrt(2)*(sqrt(2) -
2/sqrt(tan(d*x + c)))) + sqrt(2)*(a^2 + 2*a*b - b^2)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - sq
rt(2)*(a^2 + 2*a*b - b^2)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))/(a^4 + 2*a^2*b^2 + b^4))*e^(-
1/2)/d

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {e \cot {\left (c + d x \right )}} \left (a + b \cot {\left (c + d x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))**(1/2)/(a+b*cot(d*x+c))**2,x)

[Out]

Integral(1/(sqrt(e*cot(c + d*x))*(a + b*cot(c + d*x))**2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((b*cot(d*x + c) + a)^2*sqrt(e*cot(d*x + c))), x)

________________________________________________________________________________________

Mupad [B]
time = 8.16, size = 2500, normalized size = 6.35 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*cot(c + d*x))^(1/2)*(a + b*cot(c + d*x))^2),x)

[Out]

(log(- (((((((((128*b^2*e^10*(2*b^6 - a^6 + 9*a^2*b^4 + 6*a^4*b^2))/(a*d) - 256*b^3*e^10*(e*cot(c + d*x))^(1/2
)*(a^2 - b^2)*(a^2 + b^2)^2*(1i/(d^2*e*(a*1i - b)^4))^(1/2))*(1i/(d^2*e*(a*1i - b)^4))^(1/2))/2 - (64*b^2*e^9*
(e*cot(c + d*x))^(1/2)*(2*b^8 - a^8 + 5*a^2*b^6 + 67*a^4*b^4 - a^6*b^2))/(a*d^2*(a^2 + b^2)^2))*(1i/(d^2*e*(a*
1i - b)^4))^(1/2))/2 - (32*b^5*e^9*(25*a^6 + b^6 - 13*a^2*b^4 - 85*a^4*b^2))/(a^2*d^3*(a^2 + b^2)^3))*(1i/(d^2
*e*(a*1i - b)^4))^(1/2))/2 - (16*b^5*e^8*(e*cot(c + d*x))^(1/2)*(b^6 - 27*a^6 + 7*a^2*b^4 + 11*a^4*b^2))/(a^2*
d^4*(a^2 + b^2)^4))*(1i/(d^2*e*(a*1i - b)^4))^(1/2))/2 - (16*b^6*e^8*(5*a^2 + b^2))/(a*d^5*(a^2 + b^2)^4))*(-1
/(a^4*d^2*e*1i + b^4*d^2*e*1i - a^2*b^2*d^2*e*6i + 4*a*b^3*d^2*e - 4*a^3*b*d^2*e))^(1/2))/2 - log(- (((((((((1
28*b^2*e^10*(2*b^6 - a^6 + 9*a^2*b^4 + 6*a^4*b^2))/(a*d) + 256*b^3*e^10*(e*cot(c + d*x))^(1/2)*(a^2 - b^2)*(a^
2 + b^2)^2*(1i/(d^2*e*(a*1i - b)^4))^(1/2))*(1i/(d^2*e*(a*1i - b)^4))^(1/2))/2 + (64*b^2*e^9*(e*cot(c + d*x))^
(1/2)*(2*b^8 - a^8 + 5*a^2*b^6 + 67*a^4*b^4 - a^6*b^2))/(a*d^2*(a^2 + b^2)^2))*(1i/(d^2*e*(a*1i - b)^4))^(1/2)
)/2 - (32*b^5*e^9*(25*a^6 + b^6 - 13*a^2*b^4 - 85*a^4*b^2))/(a^2*d^3*(a^2 + b^2)^3))*(1i/(d^2*e*(a*1i - b)^4))
^(1/2))/2 + (16*b^5*e^8*(e*cot(c + d*x))^(1/2)*(b^6 - 27*a^6 + 7*a^2*b^4 + 11*a^4*b^2))/(a^2*d^4*(a^2 + b^2)^4
))*(1i/(d^2*e*(a*1i - b)^4))^(1/2))/2 - (16*b^6*e^8*(5*a^2 + b^2))/(a*d^5*(a^2 + b^2)^4))*(-1/(4*(a^4*d^2*e*1i
 + b^4*d^2*e*1i - a^2*b^2*d^2*e*6i + 4*a*b^3*d^2*e - 4*a^3*b*d^2*e)))^(1/2) + atan(((-1i/(4*(a^4*d^2*e + b^4*d
^2*e - 6*a^2*b^2*d^2*e + a*b^3*d^2*e*4i - a^3*b*d^2*e*4i)))^(1/2)*(((16*(24*a^2*b^11*d^2*e^9 - 2*b^13*d^2*e^9
+ 196*a^4*b^9*d^2*e^9 + 120*a^6*b^7*d^2*e^9 - 50*a^8*b^5*d^2*e^9))/(a^10*d^5 + a^2*b^8*d^5 + 4*a^4*b^6*d^5 + 6
*a^6*b^4*d^5 + 4*a^8*b^2*d^5) + (-1i/(4*(a^4*d^2*e + b^4*d^2*e - 6*a^2*b^2*d^2*e + a*b^3*d^2*e*4i - a^3*b*d^2*
e*4i)))^(1/2)*((-1i/(4*(a^4*d^2*e + b^4*d^2*e - 6*a^2*b^2*d^2*e + a*b^3*d^2*e*4i - a^3*b*d^2*e*4i)))^(1/2)*((1
6*(16*a*b^16*d^4*e^10 + 136*a^3*b^14*d^4*e^10 + 432*a^5*b^12*d^4*e^10 + 680*a^7*b^10*d^4*e^10 + 560*a^9*b^8*d^
4*e^10 + 216*a^11*b^6*d^4*e^10 + 16*a^13*b^4*d^4*e^10 - 8*a^15*b^2*d^4*e^10))/(a^10*d^5 + a^2*b^8*d^5 + 4*a^4*
b^6*d^5 + 6*a^6*b^4*d^5 + 4*a^8*b^2*d^5) - (16*(-1i/(4*(a^4*d^2*e + b^4*d^2*e - 6*a^2*b^2*d^2*e + a*b^3*d^2*e*
4i - a^3*b*d^2*e*4i)))^(1/2)*(e*cot(c + d*x))^(1/2)*(32*a^2*b^17*d^4*e^10 + 160*a^4*b^15*d^4*e^10 + 288*a^6*b^
13*d^4*e^10 + 160*a^8*b^11*d^4*e^10 - 160*a^10*b^9*d^4*e^10 - 288*a^12*b^7*d^4*e^10 - 160*a^14*b^5*d^4*e^10 -
32*a^16*b^3*d^4*e^10))/(a^10*d^4 + a^2*b^8*d^4 + 4*a^4*b^6*d^4 + 6*a^6*b^4*d^4 + 4*a^8*b^2*d^4)) + (16*(e*cot(
c + d*x))^(1/2)*(8*a*b^14*d^2*e^9 + 36*a^3*b^12*d^2*e^9 + 316*a^5*b^10*d^2*e^9 + 552*a^7*b^8*d^2*e^9 + 256*a^9
*b^6*d^2*e^9 - 12*a^11*b^4*d^2*e^9 - 4*a^13*b^2*d^2*e^9))/(a^10*d^4 + a^2*b^8*d^4 + 4*a^4*b^6*d^4 + 6*a^6*b^4*
d^4 + 4*a^8*b^2*d^4)))*(-1i/(4*(a^4*d^2*e + b^4*d^2*e - 6*a^2*b^2*d^2*e + a*b^3*d^2*e*4i - a^3*b*d^2*e*4i)))^(
1/2) + (16*(e*cot(c + d*x))^(1/2)*(b^11*e^8 + 7*a^2*b^9*e^8 + 11*a^4*b^7*e^8 - 27*a^6*b^5*e^8))/(a^10*d^4 + a^
2*b^8*d^4 + 4*a^4*b^6*d^4 + 6*a^6*b^4*d^4 + 4*a^8*b^2*d^4))*1i - (-1i/(4*(a^4*d^2*e + b^4*d^2*e - 6*a^2*b^2*d^
2*e + a*b^3*d^2*e*4i - a^3*b*d^2*e*4i)))^(1/2)*(((16*(24*a^2*b^11*d^2*e^9 - 2*b^13*d^2*e^9 + 196*a^4*b^9*d^2*e
^9 + 120*a^6*b^7*d^2*e^9 - 50*a^8*b^5*d^2*e^9))/(a^10*d^5 + a^2*b^8*d^5 + 4*a^4*b^6*d^5 + 6*a^6*b^4*d^5 + 4*a^
8*b^2*d^5) + (-1i/(4*(a^4*d^2*e + b^4*d^2*e - 6*a^2*b^2*d^2*e + a*b^3*d^2*e*4i - a^3*b*d^2*e*4i)))^(1/2)*((-1i
/(4*(a^4*d^2*e + b^4*d^2*e - 6*a^2*b^2*d^2*e + a*b^3*d^2*e*4i - a^3*b*d^2*e*4i)))^(1/2)*((16*(16*a*b^16*d^4*e^
10 + 136*a^3*b^14*d^4*e^10 + 432*a^5*b^12*d^4*e^10 + 680*a^7*b^10*d^4*e^10 + 560*a^9*b^8*d^4*e^10 + 216*a^11*b
^6*d^4*e^10 + 16*a^13*b^4*d^4*e^10 - 8*a^15*b^2*d^4*e^10))/(a^10*d^5 + a^2*b^8*d^5 + 4*a^4*b^6*d^5 + 6*a^6*b^4
*d^5 + 4*a^8*b^2*d^5) + (16*(-1i/(4*(a^4*d^2*e + b^4*d^2*e - 6*a^2*b^2*d^2*e + a*b^3*d^2*e*4i - a^3*b*d^2*e*4i
)))^(1/2)*(e*cot(c + d*x))^(1/2)*(32*a^2*b^17*d^4*e^10 + 160*a^4*b^15*d^4*e^10 + 288*a^6*b^13*d^4*e^10 + 160*a
^8*b^11*d^4*e^10 - 160*a^10*b^9*d^4*e^10 - 288*a^12*b^7*d^4*e^10 - 160*a^14*b^5*d^4*e^10 - 32*a^16*b^3*d^4*e^1
0))/(a^10*d^4 + a^2*b^8*d^4 + 4*a^4*b^6*d^4 + 6*a^6*b^4*d^4 + 4*a^8*b^2*d^4)) - (16*(e*cot(c + d*x))^(1/2)*(8*
a*b^14*d^2*e^9 + 36*a^3*b^12*d^2*e^9 + 316*a^5*b^10*d^2*e^9 + 552*a^7*b^8*d^2*e^9 + 256*a^9*b^6*d^2*e^9 - 12*a
^11*b^4*d^2*e^9 - 4*a^13*b^2*d^2*e^9))/(a^10*d^4 + a^2*b^8*d^4 + 4*a^4*b^6*d^4 + 6*a^6*b^4*d^4 + 4*a^8*b^2*d^4
)))*(-1i/(4*(a^4*d^2*e + b^4*d^2*e - 6*a^2*b^2*d^2*e + a*b^3*d^2*e*4i - a^3*b*d^2*e*4i)))^(1/2) - (16*(e*cot(c
 + d*x))^(1/2)*(b^11*e^8 + 7*a^2*b^9*e^8 + 11*a^4*b^7*e^8 - 27*a^6*b^5*e^8))/(a^10*d^4 + a^2*b^8*d^4 + 4*a^4*b
^6*d^4 + 6*a^6*b^4*d^4 + 4*a^8*b^2*d^4))*1i)/((-1i/(4*(a^4*d^2*e + b^4*d^2*e - 6*a^2*b^2*d^2*e + a*b^3*d^2*e*4
i - a^3*b*d^2*e*4i)))^(1/2)*(((16*(24*a^2*b^11*d^2*e^9 - 2*b^13*d^2*e^9 + 196*a^4*b^9*d^2*e^9 + 120*a^6*b^7*d^
2*e^9 - 50*a^8*b^5*d^2*e^9))/(a^10*d^5 + a^2*b^...

________________________________________________________________________________________